
To determine the absolute coefficients of recording of x-ray and gamma quanta by such 
a converter we calibrated the converter on standard gamma sources. The results of the calib- 
ration using the standard procedure are given in Table i, where column 4 shows the coeffi- 
cients of recording with direct irradiation of the surface of the MCP with x rays (normal 
incidence), while column 5 shows the recording coefficients for recording of x-ray quanta 
by the system Fig. 2a. The much higher recording coefficients can be explained by the much 
higher quantum yield of PbO than of Si203(Pb) and the well-known fact that the quantum yield 
is higher for glancing incidence. 

The experiments performed and the analysis of the possibilities for expanding the dynam- 
ic range for recording images show that it is possible to develop a compact image amplifier 
with high spatial and temporal resolution; such an image amplifier is being used in the de- 
velopment of an Auger spectrometer and multichannel analyzer of flows of atoms [6]. 

The author thanks G. P. Romanov for assistance in preparing the MCP. 

LITERATURE CITED 

i. V. Kh. Likhtenshtein and G. V. Alekseev, "Effect of a magnetic field on channel elec- 
tronic multipliers and multichannel plates," Preprint IAE-3124, Moscow (1979). 

2. A.F. Sorokin, "Strong-current microchannel plates for electrooptical conversion of the 
x-ray range," in: Abstracts of Reports at the All-Union Conference on Visualization of 
X-Ray Diffraction Images of Defects in Crystals, Erevan (1983). 

3. A.F. Sorokin, "Measurement of recording characteristics of microchannel plates," in: 
Scientific-Technical Conference on NKI, Nikolaev (1982). 

4. O.P. Oleshko-Ozhevskii and V. N. Rozhanskii, "Application of x-ray continuous observa- 
tion vidicons for the study of phase transitions in ferroelectrics," in: Abstracts of 
Reports; at the All-Union Conference on the Visualization of X-Ray Diffraction Images 
of Defects in Crystals, Erevan (1983). 

5. S. Matsuura, S. S. Umebaushi, et el., "Current status of the microchannel plate," IEEE 
Trans., NS-31, No. 1 (1984). 

6. A.F. Sorokin, "Construction of an analyzer for neutral atom flows," Bibliograficheskii 
Sb. VINITI, No. 2 (1981). 

LIMITATION OF CUMULATIVE PROCESSES IN THE COLLAPSE 

OF A BUBBLE IN A LIQUID 

V. V. Ermakov UDC 532.59 

The converging motion of an incompressible liquid is known to result in a local buildup 
of kinetic energy of the liquid. In such cumulative processes, at least theoretically [i], 
it is possible for energy to become concentrated in an infinitesimal volume and for infinite- 
ly large pressures and temperatures to develop. Obviously, such a cumulative process is al- 
ways limited in practice by the nonideal nature of the liquid itself; viscosity, thermal con- 
ductivity, and compressibility must be taken into account [2, 3]. These effects do not alter 
the general behavior of the converging flow and play a major role in estimating the physical- 
ly attainable limiting parameters of the cumulative process. A dimensional analysis shows 
[4] that such an important cumulative problem as the Rayleigh problem [5] admits the formula- 
tion of a cumulative-bounded solution if allowance is made for the thermodynamic properties 
of the residual gas in the bubble interior. The dynamic flow pattern in this case has been 
studied in detail in a number of papers [6, 7]. In the present study we discuss the analysis 
of flow stability in connection with the collapse of a gas bubble in a liquid. 

It is usually attempted in the investigation of the motion of an energy-accumulating 
liquid to obtain a reliable picture of the pressure field inside the liquid [7]. For an in- 
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compressible liquid, however, the internal energy is not related to the pressure [8] and so 
it is important to consider the characteristics of the conversion of bubble potential energy 
into kinetic energy of the liquid during collapse. We write the expression for the collapse 
rate 

�9 2  or< . , (%/"q 

where p is the density of the liquid, a = P/P0 is the ratio of the pressure in the liquid 
far from the cavity boundary to the initial pressure of the gas in the cavity interior, y is 
the adiabatic exponent of the gas, and R 0 and R are the initial and instantaneous radius of 
the cavity, respectively. It is evident that the rate is a maximum when 

I 

Since R I d =_~(R)2, the acceleration of the cavity boundary is zero at the point of maximum 

collapse rate. At the start of the collapse process R = ~--(I--a) or ~ ~ for a >> i. 
p R  o - -  pB o 

We also calculate the variation of the kinetic energy of the liquid during the motion: 

oo 

AEH = 4~ p-- f  r~dr 
R 

(v is the velocity of a liquid particle with the coordinate r). The integration must be ex- 
tended to ~ in correspondence with the initial conditions of the problem [5]. Consequently, 

4 4 3 

The first term of this expression corresponds to the variation of the potential energy of 
formation of a spherical cavity in a given pressure field, and the second term is simply the 
increment of the internal energy of the residual gas in the adiabatic approximation [i], i.e., 

AEH = AE K + AEin. 

The liquid is accelerated throughout the entire process of collapse of the cavity. How- 
ever, the accelerated motion of an incompressible liquid can be unstable. This refers speci- 
fically to Rayleigh--Taylor instability, which occurs, e.g., in the motion of an incompressible 
liquid in a gravity field [9]. We use the latter model, replacing the force of gravity by 
an inertial force directed oppositely to the acceleration of the liquid. At the start of the 
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collapse process, the acceleration is directed toward the center of the bubble. In this case, 
according to the theory, disturbances develop and grow at the rate ~2 ~ l~Ik ' where k is the 
wave vector and m is the angular frequency of the disturbance. If the motion took place in 
a gravity field, the surface of the liquid would vary according to the law y = Y0 chmt,cos kx. 
Here ~ is given by the expression m2 ~ • where the plus sign corresponds to the case where 
the liquid is subjected to pressure acting against gravity and instability sets in, and the 
minus sign corresponds to the opposite, stable situation. As mentioned, we now replace the 
force of gravity by an inertial force with allowance for the sign of the acceleration. It 
then turns out that the motion is stable up to the maximum velocity and is unstable after 
the maximum velocity. Figure 1 illustrates these considerations. Thus, Rayleigh-Taylor in- 
stability sets in during the collapse of a spherical gas-filled bubble. 

It has been shown above that the real collapse of a bubble in a liquid seldom results 
in any appreciable accumulation of energy, because Rayleigh-Taylor instability sets in during 
the final stage of collapse. The cumulative process in the given situation is based on the 
conversion of the potential energy of bubble formation into kinetic energy of the converging 
flow. On the other hand, the variation of the bubble size during collapse causes the thermal 
energy of the gas in the bubble interior to increase and causes the probability of further 
acceleration of the liquid to decrease. In other words, both the kinetic energy of the liquid 
and the thermal energy of the gas have the same source: the potential energy of formation 
of the bubble. The process of conversion of this energy in cumulative problems is irrevers- 
ible, and so the cumulative process must cease once the total current store of potential energy 
has been exhausted. The subsequent motion of the liquid is unstable. It can therefore be 
postulated that the physical causes of the Rayleigh-Taylor instability in the given situation 
are the special attributes of the evolution of the energy balance of the total system compris- 
ing the liquid and the residual gas inside the bubble. 
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